The Avalanching Effect: A Crucial Factor in DEM Calibration and Granular Material Behavior

18.10.23 Adam Kolusz, Alberto Gallina

ASTRA 2023 17th Symposium on Advanced Space Technologies in Robotics and Automation

What is DEM (Discrete Element Method) and Why is it Important?

- A numerical technique for simulating granular materials;
- Applications:
 - terramechanics,
 - aerospace engineering,soil mechanics,civil engineering.
- Faster, cost-effective prototyping;
- Simulation of harsh environments,
 i.e. lower gravity conditions;

What is DEM (Discrete Element Method) and Why is it Important?

- A numerical technique for simulating granular materials;
- Applications:
 - terramechanics,
 - aerospace engineering,
 - soil mechanics,
 - civil engineering.

Faster, cost-effective prototyping; Simulation of harsh environments, i.e. lower gravity conditions;

Parameter Calibration with Experiments

- Difficult, tinkering with parameters of different contact models, no standard procedure.
 - Necessary to ensure model accuracy and reliability;
- Common methods:
 - AoR (static, dynamic)
 - shear test,
 - 3-axis test,
- Vital for replicating real-world scenarios.

Contact model numerical parameters (examples)

Friction	Adhesive
coefficients	distance
Force fraction	Restitution coefficient
Rolling	Tangential
Resistance	stiffness ratio

Parameter Calibration with Experiments

- Difficult, tinkering with parameters of different contact models, no standard procedure.
- Necessary to ensure model accuracy and reliability;
- Common methods:
 - AoR (static, dynamic).
 - shear test,
 - 3-axis test,

• Vital for replicating real-world scenarios.

Contact model numerical parameters (examples)

Friction	Adhesive
coefficients	distance
Force fraction	Restitution coefficient
Rolling	Tangential
Resistance	stiffness ratio

Angle of Repose (AoR) - Traditional Measurements

KARG Industrietechnik repose angle tester <u>https://www.karg-industrietechnik.de/en/products/raw-material-</u> <u>testing/angle_of_repose_tester.php</u>

Marigo, M. & Stitt, E. (2015). Discrete Element Method (DEM) for Industrial Applications: Comments on Calibration and Validation for the Modelling of Cylindrical Pellets. KONA Powder and Particle Journal. 32. 236-252.

Invalid region selection, large flowrate

- Time series data, extra information to compare materials
- Large impact on Angle of Repose;
- Can lead to large discrepancies (up to 9%);
- Often overlooked (no standard for measuring AoR)

AGK2010 Simulant

- Cohesive
- Large quantity available
- Particle distribution
- Similar to Chenobi

- Time series data, extra information to compare materials
- Large impact on Angle of Repose;
- Can lead to large discrepancies (up to 9%);
- Often overlooked (no standard for measuring AoR)

AGK2010 Simulant

- Cohesive
- Large quantity available
- Particle distribution
- Similar to Chenobi

Time

Single experiment measurements

Correlation Matrix

					- 1.0
	1	0.48	0.64	0.028	- 0.8
	0.48	1	0.37	0.055	— 0.6
	0.64	0.37	1	0.079	— 0.4
	0.028	0.055	0.079	1	— 0.2

weight_g_filtered

left_angle

right_angle

weight_g_filtered

left_angle

right_angle

flow_rate_filtered

Spectral Analysis of AoR with Peaks

Conclusions

- Not considering avalanching = invalid measurement;
- Better statistical analysis required;
- DEM calibration
 - Experiment flowrate as simulation input;
 - Multiple seconds of simulation necessary;
- Remote testing of material? (i.e. rover with a gripper sifting remotely)

Acknowledgements and Q&A

- AGH UST
- The Space Research Centre of the Polish Academy of Sciences (CBK PAN)
- This research was funded by the National Science Centre 2020/38/E/ST8/00527.

Thank you for your attention

Adam Kolusz <u>akolusz@agh.edu.pl</u>